您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-07-26 02:03  








果干烘干機溫控系統組成(原理)
本文所述的烘干機是用來烘干紫菜等產品,完成存儲意圖的裝置。采用箱式結構,以熱輻射加熱為主,采用對流熱風循環。烘干機采用1 個烘干箱,6 個溫區,每個溫區的丈量和控制原理完全相同。箱頂上部需設置一至二只尾氣排出管,在果干烘干機管內還應有調節閥門。烘干過程中,烘干箱內溫度的資料和控制規模為0-110℃,顯現精度為0.1℃,控制精度小于1℃。根據上述要求進行設計溫控系統,以滿意烘干機所有的溫度、精度。
本文設計的溫控系統硬件部分分為:單片機主控模塊、輸入輸出通道模塊、報警模塊等。硬件的整體結構示意圖。果干烘干機溫控系統由單片機為中心,與外部芯片擴展構成主控模塊。風道和隔板的龍骨框架為20mm×20mm的方管,板材為彩圖鋼板。烘干箱的溫度由溫度傳感器檢測后,通過單片機內置的12 位A/D 轉化器轉化成數字信號。數字信號經采樣、濾波、標度轉化后,一方面將烘干箱內溫度由顯現器顯現,另一方面將該溫度值與設定值進行比較,取偏差值依照積分別離的PID 控制算法計算得輸出控制量。控制輸出量通過固態繼電器控制加熱管的加熱時間,從而調節溫度改變,使其趨向設定值,完成烘干機的溫度控制。
溫控系統設計(硬件)
果干烘干機電源電路
電源模塊是溫控系統重要的組成部分,為系統中各模塊供給穩定牢靠的作業電壓,保證系統正常作業。本系統采用外部12V 直流電源供電,經處理轉化成3.3V 為單片機供電。然后開機,此階段升溫要在4~6h內溫度升高到45~48℃,當表皮變軟,溫度升高到50~55℃,不要在短時間內把溫度升得太快,不然小棗會呈現糖化或炭化現象,嚴峻的會呈現棗果開裂,影響棗果質量。果干烘干機設計分兩步,一:選用輸出電壓精度高,輸出電流大的模塊電源,將電壓從12V 轉化成5V;二:選用三端集成穩壓器將電壓從5V 轉化成3.3V。
果干烘干機溫控方案規劃
PID 操控從發生并發展至今已有百年歷史,雖然現在各種先進控制算法層出不窮,但PID 操控扔未被篩選,源于其結構簡單、參數易于整定,并且具有較好的魯棒性,在操控技術領域依舊占據主導地位,廣泛的應用于工業生產中。
果干烘干機
PID 操控的中心是數學模型及其參數的設定,本文結合溫控箱的實踐生產過程,存在升溫文天然降溫的問題,規劃操控算法時,將其當作一個線性系統,選用一個慣性環節結合一個純滯后環節作為溫控箱的數學模型。
果干烘干機使用單片機規劃了紫菜烘干機的溫度操控系統,該系統運行
可靠、成本低、維護便利、操作簡單等特色。突破了傳統加工易污染、效率低的問題,改進了一般溫控加熱滯后性、時變性的問題,完成了紫菜烘干的全過程監控,具有操控精度高、自適應強的特色。水分從界面層向熱空氣蒸騰擴散的速率與界面層的濕度梯度成正比,水分從內部物質向界面層轉移的速率與界面層的濕度梯度成反比。后期研討可將其擴展為其它水產品以及農產品的烘干操控系統,契合市場需求,完成產業化發展。
研究了熱泵輔助太陽能烘干鮮棗設備的技能原理并進行了參數設計,斷定了9 塊空氣集熱器和12 匹熱泵。通過試驗得出鮮棗的干燥規律分為4 個階段: 預熱升溫階段、蒸騰階段、干燥完結階段和降溫排濕階段。
果干烘干機空氣能烘干機組匹配
1 000 kg 紅棗烘干房的熱負荷為18. 9 kW,本方案設計運用KFD-20II ( A) 空氣源熱風熱泵烘干機1臺,適用環境溫度- 5 ~ 40 ℃。在規范工況下,該機型每臺可產熱量20 kW > 18. 9kW,可滿足烘干需求。果干烘干機烘干實驗鮮棗烘制的工藝經過實驗進行,把鮮棗烘干的過程大致分為4個階段:預熱升溫階段、蒸騰階段、干燥完成階段和降溫排濕階段。室內機風量可根據烘烤工藝要求匹配設計果干烘干機選用變頻調速風機,并根據烘干要求及時調節風機風量,提高烘干質量。
太陽能焦熱器設計與匹配
為了充分利用綠色環保動力,在烘干房的頂部安裝太陽能空氣集熱器作為輔助動力,然后削減電能的耗費。
天津的太陽能資源較為富足,屬于我國二等太陽能輻照地區,位于東徑117. 10°,北緯39. 06°,年照時數為2 600 ~ 2 800 h。對于鮮棗的干制實驗結果顯示,干燥時刻為18h,傳統天然干燥時刻為15d,遇上陰雨氣候還要延長。紅棗收成烘干時節為秋分( 9 月22、23 日) 后30 d 左右,從氣候數據庫可知此刻天津的日均勻輻照量及日均勻輻射時刻。
果干烘干機烘干室結構優化
因為同一層鏈板式傳送帶上下隔板間的左右兩頭是無任何阻止的,而供熱爐提供的熱空氣將由烘干室底部由左右兩頭直接向上活動,由于左右兩頭的阻力小,大部分的熱空氣流會由左右兩頭向上活動,并沒有從傳送帶穿過,這樣的成果將導致烘干功率低下及能源浪費,本計劃對烘干機烘干室側壁增設擋風板,通過此方式來減少熱氣流直接向竄。在上述過程中,由相對濕度較低的熱風帶走了果蔬物料的水分而使其烘干。擋風板的方位設在距離底部第5層傳料板高的方位,與側箱壁成一定視點。
加擋風板的果干烘干機烘干室內溫度場散布相對比較集中。通過對氣流速度與單位時刻失水率的分析,故干燥適合的氣流速度在17~22m/s。擋風板的增設阻擋了熱空氣向串,提高了烘干功率,縮短了烘干時刻。對比可以看出,增設擋風板的作用仍是比較明顯的,極大的消除了傳料板與側壁之間的空隙,有用的阻止了熱空氣向上的活動,使溫度散布相對更集中,因此該增設擋風板的計劃在理論上是可行的。
運用ANSYS Workbench的FLUENT對果干烘干機干燥室內流場分布進行了模仿剖析,就對同一風速下不同風溫的溫度場的數值剖析成果進行了模仿。果干烘干機分級器內孔直徑D取110~140mm時,樣品B實驗的出籽率逐步增大接近至100%,樣品A實驗的出籽率幾乎為0。特別對烘干機干燥室內溫度場散布非均勻性問題,指出了增加擋風板的優化改進。再針對優化計劃進行數值模仿,比較未優化之前的成果,增設擋風板有利于烘干室內溫度場的均勻性的改進。