您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-11-06 07:37  





調節閥在管道中起可變阻力的作用。它改變工藝流體調節閥的紊流度或者在手動調節閥層流情況下提供一個壓力降,且壓力降是由改變閥門阻力或“摩擦”所引起的。這一壓力降低過程通常稱為“節流”。對于氣體,它接近于等溫絕熱狀態,偏差取決于氣體的非理想程度(焦耳一湯姆遜效應)。角行程閥節流的方向就是水平方向,介質水平流進,水平流出,容易把不干凈介質帶走,同時流路簡單,介質沉淀的空間也很少,所以角行程閥防堵性能好。在液體的情況下,壓力則為紊流或粘滯摩擦所消耗,這兩種情況都把壓力轉化為熱能,導致溫度略為升高。
常見的控制回路包括三個主要部分,部分是敏感元件,它通常是一個變送器。它是一個能夠用來測量被調工藝參數的裝置,這類參數如壓力、液位或溫度。變送器的輸出被送到調節儀——調節器,它確定并測量給定值或期望值與工藝參數的實際值之間的偏差,一個接一個地把校正信號送出給終控制元件——調節閥。閥門改變了流體的流量,使工藝參數達到了期望值。汽缸采用進口鏡面汽缸,無油潤滑,摩擦系數小,耐腐蝕,具有的耐用性及可靠性。調節閥屬于控制閥系列,主要作用是調節介質的壓力、流量、溫度等參數,是工藝環路中終的控制元件。
調節閥的流量特性有線性特性,等百分比特性及拋物線特性三種。三種注量特性的意義如下:
(1)等百分比特性(對數)等百分比特性的相對行程和相對流量不成直線關系,在行程的每一點上單位行程變化所引起的流量的變化與此點的流量成正比,流量變化的百分比是相等的。所以它的優點是流量小時,流量變化小,流量大時,則流量變化大,也就是在不同開度上,具有相同的調節精度。用該方法操作存在以下問題:一是安全系數低,二是容易造成調節閥報廢,三是工作過程耗時、費力,增加人工成本。
(2)線性特性(線性)線性特性的相對行程和相對流量成直線關系。單位行程的變化所引起的流量變化是不變的。流量大時,流量相對值變化小,流量小時,則流量相對值變化大。
(3)拋物線特性流量按行程的二方成比例變化,大體具有線性和等百分比特性的中間特性。
從上述三種特性的分析可以看出,就其調節性能上講,以等百分比特性為,其調節穩定,調節性能好。而拋物線特性又比線性特性的調節性能好,可根據使用場合的要求不同,挑選其中任何一種流量特性。

調節閥在現代化工廠的自動控制中,調節閥起著十分重要的作用,這些工廠的生產取決于流動著的介質正確分配和控制。這些控制無論是能量的交換、壓力的降低或者是簡單的容器加料,都需要某些終控制元件去完成。
在化工生產工藝流程中的管路和設備中,有大量的流體流量調節閥對保證設備的正常運行起著至關重要的作用。它們有多種結構形式,分別適用于不同場合。其主要作用即用于調節流量,以保證設備的穩定運行。它們有操作簡單、方便,易于控制等特點,故受到廣泛的應用。但也有消耗能量過大、閥門元件易損等缺陷,若設計使用不當,會給生產帶來影響。閥蓋處采用波紋管加填料雙重密封,從根本上杜絕了介質外漏的可能性。本文主要討論的是對管路流量調節過大、輸送流體溫度過高,可能會產生的汽蝕和閃蒸現象以及其對調節閥的破壞及防止方法。
1.出現蝕和閃蒸的原因分析
1.1 流體在調節閥中的流動過程
液體在調節閥的流道中的流動過程是極其復雜的,根據連續性方程:
uAp=常數
式中u——截面平均流速,m/s;
A—— 流道截面積,m2;
p—流體介質的密度,kg/m3。
對于不可壓縮的流體,p=常數,因此uA=常數,亦即流體的流速和通過該截面的截面積成反比。
同時,又根據伯努利方程式[1]:
式中z——位置標高,m;
p——靜壓強,Pa;
g—— 重力加速度,kg?m/s2。
忽略管道進出口流體的位置標高差別,如果通過截面時的流速增大,則意味著斷面的壓力將下降,當流體的壓力下降到該溫度下的飽和壓力Pv時,液體將出現汽化,同時發生汽蝕或閃蒸現象。
由于汽蝕現象和閃蒸現象對設備有較大的破壞力。我們以前僅對離心泵的汽蝕現象研究較多,而對管路中調節閥可能產生的汽蝕和閃蒸現象造成的破壞未引起足夠重視,因此研究防止液體在流動過程中產生汽蝕和閃蒸的機理將顯得更加重要。