您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-10-31 10:59  






PCD刀具加工有色金屬是大規模工業生產的,不同的鋁合金其加工效果也不盡相同。PCD刀具一般采用鋒利切削刃,在刀具使用初期出現表面質量差的現象,隨著刀具使用時間的增加,其加工質量越來越好,這是由于PCD刀具在切削過程中鋒利刃口的逐漸鈍化所致。在切削加工中,刃口鈍化是影響刀具性能和壽命的重要因素。刀具經刃磨后刃口會存在毛刺和微缺口,這種微缺口會影響刀具壽命和加工工件表面質量。刃口鈍化能有效去除小的毛刺和微缺口,得到光滑均勻的切削刃,從而提高工件表面質量。刃口光滑性的提高能有效預防積屑瘤的產生。鈍化能夠提高和改善刀具的抗拉強度和刃口韌性,增加刀具強度,從而提高刀具壽命,減小因峰刃缺陷而引起的初期不穩定磨損。刀具在涂層之前需經過鈍化處理,提高刀具表面光潔度,從而使涂層牢固。
圖1 刀具鈍化實驗裝置
目前關于鈍化的研究主要針對硬質合金,而對于PCD刀具鈍化的研究較少。本文探索一種PCD刀具的鈍化方法及其對鋁合金加工表面粗糙度的影響。通過國產小型鈍化機對PCD刀片進行鈍化,并研究了鈍化加工參數對鈍化后刃口的影響,為選擇合理的鈍化加工參數提供參考。通過單因素試驗探究了鈍化對表面粗糙度的影響,研究分析了不同切削參數下鈍化刀具對車削1060鋁合金表面粗糙的影響規律。
刃口鈍化試驗研究
如圖1所示,本試驗鈍化設備為2MQ6712D小型可轉位刀片刃口鈍化機,用含金剛石磨料的盤刷對PCD刀具進行鈍化。采用特殊的裝夾方式進行鈍化,可以使鈍化后的刃口成倒圓形。鈍化后的刀片垂直于切削刃磨一個端面,從圖中可以看出鈍化后的刃口呈倒圓形(見圖2)。
圖2 鈍化后切削刃的剖面圖
小型可轉位刀片刃口鈍化機主要利用刀具與磨料刷的相對運動形成磨損,從而達到鈍化的目的。磨料刷對切削刃的磨損形式主要為磨料磨損,去除過程中切削刃的加工質量和加工效率取決于尼龍絲對切削刃的碰撞作用。隨著轉速的提高和磨料顆粒的增大,磨料顆粒的動能增大,碰撞過程越劇烈。但過大的轉速和磨料顆粒在鈍化過程中會導致切削刃崩刃或者崩塊,降低了切削刃的表面質量。通過試驗發現,選擇合適的轉速和磨料顆粒在保證加工效率的同時有利于提高切削刃的鈍化質量。因此本試驗選用絲徑4mm含800目金剛石磨料的磨料刷,轉速800r/min,切削刃和磨料刷接觸長度為2mm,在該條件下能夠得到較好表面質量的切削刃。圖2為切削刃鈍化后的微觀形貌,從圖中可以看出選擇上述鈍化加工參數得到的鈍化后的刃口很光滑均勻,隨著鈍化時間的改變可以得到不同大小的鈍化半徑。
通過圖2和圖3可以看出,利用國產小型可轉位刀片刃口鈍化機,采用特殊的裝夾方式并選用合理的鈍化加工參數對PCD刀片進行鈍化,可以得到光滑均勻的倒圓刃。
圖3 鈍化后的切削刃的形貌
單因素切削試驗
在相同的切削條件下,采用相同切削參數對比鈍化與未鈍化的PCD刀具車削1060鋁合金材料對表面粗糙度的影響規律。為了進一步研究切削深度對鈍化刀具所形成表面粗糙度的影響,選用較小切削深度參數分析切削深度對表面粗糙度的影響。
1.試驗條件
機床參數:SK50P/750型數控車床;工件材料:1060鋁合金,工件尺寸Φ70mm×250mm圓棒;刀桿型號:SDJCR2525M11;刀片參數:PCD刀片型號DCMW11T304,粒度約10μm。測量儀器:車削后工件的表面粗糙度的測量采用觸針式表面粗糙度儀(時代TR200),取樣長度2.5mm,取樣數量5,在不同位置取5次樣計算平均值。PCD刀具的主要幾何參數如表1所示。
表1 PCD車刀的主要幾何參數
2.試驗方案
采用鈍化和未鈍化兩種PCD車刀車削工件外圓,選取的刀具鈍化值約為18μm。冷卻方式為乳化液冷卻,切削參數及測量結果如表2和表3所示,鈍化和未鈍化刀具均采用此組參數。
試驗結果分析
1.不同切削參數下PCD刀具鈍化對表面粗糙度的影響分析
表2 切削參數及實驗結果
根據表2中所得的試驗結果繪制各參數對表面粗糙度影響圖,圖4為鈍化和未鈍化兩種刀具切削速度對表面粗糙度的影響,可見,鈍化刀具加工工件表面粗糙度總體低于未鈍化刀具。鈍化和未鈍化刀具加工工件表面粗糙度都隨切削速度的增大而增大,但增大幅度很小。
圖4 鈍化和未鈍化刀具切削速度對表面粗糙度的影響
圖5為鈍化和未鈍化兩種刀具進給量對表面粗糙度的影響。從圖中可以看出,鈍化和未鈍化刀具隨著進給量的增加表面粗糙度呈增大趨勢,且增大的幅度較大。在進給量較小時,鈍化和未鈍化刀具車削所形成表面粗糙度區別不大;隨著進給量的增大,鈍化對表面粗糙度的影響越來越明顯,在進給較大時鈍化刀具車削所形成表面粗糙度明顯小于未鈍化刀具。
圖5 鈍化和未鈍化兩種刀具進給量對表面粗糙度的影響
圖6為鈍化和未鈍化兩種刀具切削深度對表面粗糙度的影響。從圖中可以看出,鈍化刀具加工工件表面粗糙度總體低于未鈍化刀具。在0.1-06mm切削深度范圍內,切削深度對表面粗糙度影響不大。
圖6 鈍化和未鈍化兩種刀具切削深度對表面粗糙度的影響
由上述分析可知,PCD刀具車削1060鋁合金時進給量對表面粗糙度的影響,速度和切削深度對表面粗糙度的影響較小。在不同切削參數下鈍化后的刀具所形成表面粗糙度低于未鈍化刀具,隨著進給量的增大鈍化對表面粗糙度的影響越來越大。這是由于鈍化后的刀具在刃口處形成了一個光滑均勻的倒圓刃,消除了刃磨后的微缺口,同時由于鈍化半徑的存在對已加工表面起擠壓修光作用,因此鈍化后的刀具車削所形成的工件表面質量更高。
2.鈍化刀具在小切削深度時對表面粗糙度的影響
通過分析可知,在所選的切削深度范圍內,切削深度對表面粗糙度基本沒有影響。為了進一步研究切削深度對鈍化刀具車削形成的表面粗糙度的影響規律,采用小切削深度,研究鈍化對車削所形成的表面粗糙度的影響。測量結果見表3。
表3 小切削深度參數對表面粗糙度的影響
根據表3中實驗結果繪制切削深度對表面粗糙度影響規律如圖7所示。從圖中可以看出,在切削深度為20μm時,鈍化刀具所形成表面粗糙度比同一條件下其他切削深度所形成的表面粗糙度低,未鈍化刀具沒有此現象。可見,當切削深度約為20μm時,鈍化半徑對表面粗糙度的影響比較明顯。
圖7 小切削深度對表面粗糙度的影響
小結
(1)采用特殊的裝夾方式,在合理的加工參數下通過國產小型鈍化機作鈍化處理后,可以得到光滑均勻的正倒圓切削刃。
(2)PCD刀具車削1060鋁合金時,進給量對表面粗糙度的影響,切削速度和切削深度對表面粗糙度的影響較小。在相同切削條件下,使用相同切削參數鈍化刀具車削1060鋁合金所獲得的表面粗糙度低于未鈍化刀具。隨著進給量的增大,鈍化對表面粗糙度的影響越來越大,在進給量較大時鈍化刀具車削所形成表面粗糙度明顯小于未鈍化刀具。刀具經鈍化后消除了刃口毛刺和微刃口,同時在刃口處形成一個倒圓形刃口半徑。刃口半徑的存在對工件已加工表面起到了擠壓修光作用,提高了工件表面質量。
(3)鈍化刀具在切削深度為20μm時加工獲得的表面粗糙度低于其他切削深度,鈍化對表面粗糙度的影響比較明顯。
德國轎車齒輪加工技能,震撼解讀!
現在,我國已成為世界地一轎車制作與銷售大國,轎車制作業已成為我國經濟不可或缺的支柱產業。轎車齒輪制作與運用量(主機及配件運用)無疑成為世界地一。
轎車齒輪作為轎車上要害零件,首要用于傳遞動力和運動,并通過它們來改動發動機曲軸和主軸齒輪的速比。因為轎車行進狀況隨路況隨機改變,因而轎車齒輪的工作狀況非常復雜,這就要求轎車齒輪具有杰出的內質量。
轎車齒輪熱處理工藝、特點與效果
轎車齒輪的內涵質量首要是指齒輪的顯微安排、力學功能等目標滿意技能要求,一起其他缺陷必須操控在規則的技能范圍之內。
轎車齒輪內涵質量的好壞是決定齒輪質量的要害,其徹底取決于熱處理質量,是齒輪完成低噪聲、,長壽命的要害因素。
轎車齒輪熱處理(工藝)包括:一是普通熱處理,如退火、正火、淬火、回火、調質;二是外表熱處理,其包括外表淬火(如感應淬火、激光淬火等)和化學熱處理(如滲碳、碳氮共滲、滲氮、氮碳共滲等)。
1調質
調質是將齒輪等零件淬火后進行高溫(500~650℃)回火的操作。調質處理常用于含碳量0.3%~0.5%(質量分數)的碳素鋼或合金鋼制作的齒輪。
調質能夠細化晶粒,并獲得均勻、具有必定彌散度、尤秀力學功能的回火索氏體安排。一般經調質處理后,齒輪硬度可達220~285HBW。調質齒輪的歸納功能優于正火。
調質常用于齒輪的準備熱處理(如滲氮、感應淬火前的調質處理)和終究熱處理。
2外表淬火
齒輪齒面淬火硬度一般為45~55HRC。外表淬火齒輪承載才能高,并能夠承受沖擊載荷。通常外表淬火齒輪的毛坯經正火或調質處理,以便使齒輪心部有必定的強度和韌度。
外表淬火首要有感應淬火、激光淬火與火焰淬火等。與滲碳淬火比較,外表淬火變形小、成本低、。
轎車齒輪外表淬火首要選用感應淬火工藝。因為感應加熱速度快,幾乎沒有氧化、脫碳,齒輪變形很小,還易于完成局部加熱及主動化生產,熱處理成本低。因而,在現代化轎車行業中得到廣泛應用。
3滲碳與碳氮共滲
滲碳淬火
滲碳淬火是先將齒輪等零件放入滲碳介質中,在880~950℃下加熱、保溫,使齒輪外表增碳,然后進行淬火。
轎車齒輪常用氣體滲碳工藝。滲碳淬火、回火后齒輪外表硬度一般在58~63HRC。現在,滲碳淬火已經成為重要轎車齒輪(如差速器齒輪、驅動橋主從動弧齒錐齒輪、變速器齒輪等)的主導熱處理工藝。
碳氮共滲
近幾年轎車用主動變速器AIT滲碳齒輪的齒面在工作中的實踐溫度約達300℃,遠高于正常的回火溫度(150~200℃)。這種外表的溫度將導致硬度下降,引發點蝕的產生。選用碳氮共滲后噴丸硬化可進步疲憊強度。在碳氮共滲時,隨著含氮量的添加ΔHV(硬度降)進步,抗回火功能進步,抗回火溫度到達300℃。
4滲氮與氮碳共滲
滲氮
滲氮是向齒輪等零件外表進入氮原子形成氮化層的化學熱處理工藝。滲氮能夠進步齒輪外表硬度、耐磨性、疲憊強度及抗蝕才能。滲氮處理溫度低,因而齒輪變形小,無需磨削或只需精磨即可。
日本在轎車變速器齒輪熱處理時選用滲氮工藝,德國Clocker-離子公司將離子滲氮應用于轎車齒輪,均進步了齒輪精度和運用壽命。
氮碳共滲
氮碳共滲是以滲氮為主一起進入碳的化學熱處理工藝。氮碳共滲能夠顯著進步齒輪的耐磨性、抗膠合和抗擦傷才能、耐疲憊功能及耐腐蝕功能。現在,氣體氮碳共滲應用于轎車、輕型客車變速器齒輪等零件。
轎車齒輪熱處理的開展趨勢
未來轎車齒輪正向重載、高速、和率等方向開展,并力求尺寸小、重量輕、壽命長和經濟可靠。
(1)高品質
首要表現在:資料的均勻性,即要求資料具有杰出的成分和安排的均勻性;溫度場和流體場,即不斷改進溫度場和各種流體場,如滲碳、滲氮、碳氮共滲的流體場和淬火的液體場的改進,進一步進步齒輪內涵質量。
(2)低能耗
齒輪熱處理先進配備的研制和開展,如開發更好的爐襯耐熱和保溫節能資料,盡可能下降爐壁溫升,削減爐壁熱損耗;廢熱歸納使用,如鑄造余熱的使用,進行鑄造余熱正火等,下降齒輪成本。
(3)環保
研究開發齒輪的新工藝,這些新工藝少(無)污染、環保,如低壓真空滲碳、離子滲氮、雙頻感應淬火、激光淬火、稀土及BH催滲等技能的開展。
(4)智能化
智能化是齒輪熱處理操控技能開展的必然趨勢,計算機、傳感器、智能庫將構成智能熱處理的中心,首要表現在:依據齒輪等零件的資料、技能要求等,體系主動生成工藝;生產過程的徹底閉環主動操控;齒輪等零件的熱處理質量的預測、預判;體系故障主動診斷與處置;在線的自適應及應急應變才能,如開發了離子滲氮、碳氮共滲所用的氮勢傳感器和低壓滲碳的碳勢傳感器等。
在現代工業出產中,運用數控車床加工螺紋,能大大前進出產功率、保證螺紋加工精度,減輕操作工人的勞動強度。但在高職院校的數控車床實習訓練教育中普遍存在如下現象:部分教師和絕大多數學生對螺紋加工感到扎手,特別是加工多頭螺紋,更加莫衷一是。下面通過螺紋零件的實踐加工分析,闡述多頭螺紋的加工步驟和辦法。
一、螺紋的底子特性
在機械制造中,螺紋聯接被廣泛運用,例如數控車床的主軸與卡盤的聯合,方刀架上螺釘對刀具的穩固,絲杠螺母的傳動等。它是在圓柱或圓錐外表上沿著螺旋線所構成的具有規定牙型的接連凸起和溝槽,有外螺紋和內螺紋兩種。按照螺紋剖面形狀的不同,主要有三角螺紋、梯形螺紋、鋸齒螺紋和矩形螺紋四種。按照螺紋的線數不同,又可分為單線螺紋和多線螺紋。在各種機械中,螺紋零件的作用主要有以下幾點:一是用于聯接、緊固;二是用于傳遞動力,改動運動形式。三角螺紋常用于聯接、穩固;梯形螺紋和矩形螺紋常用于傳遞動力,改動運動形式。由于用處不同,它們的技能要求和加工辦法也不一樣。
二、加工辦法
螺紋的加工,跟著科學技能的開展,除選用一般機床加工外,常選用數控機床加工。這樣既能減輕加工螺紋的加工難度又能前進作業功率,并且能保證螺紋加工質量。數控機床加工螺紋常用G32、G92和G76三條指令。其間指令G32用于加工單行程螺紋,編程任務重,程序復雜;而選用指令G92,可以結束簡略螺紋切削循環,使程序修改大為簡化,但要求工件坯料事前有必要通過粗加工。指令G76,克服了指令G92的缺點,可以將工件從坯料到制品螺紋一次性加工結束。且程序簡捷,可節約編程時間。
在一般車床上進行多頭螺紋車削一直是一個加工難點:當地一條螺紋車成之后,需求手動進給小刀架并用百分表校正,使刀尖沿軸向準確移動一個螺距再加工第二條螺紋;或許打開掛輪箱,調整齒輪嚙合相位,再順次加工其他各頭螺紋。受一般車床絲杠螺距過失、掛輪箱傳動過失、小拖板移動過失等多方面的影響,多頭螺紋的導程和螺距難以到達很高的精度。并且,在整個加工進程中,不可避免地存在刀具磨損甚至打刀等問題,一旦換刀,新刀有必要準判定位在未結束的那條螺紋線上。這一切都要求操作者具有豐富的經歷和高明的技能。可是,在批量出產中,單靠操作者的個人經歷和技能是不能保證出產功率和產品質量的。在制造業現代化的今日,數控機床和數控系統的運用使許多一般機床和傳統工藝難以操控的精度變得容易結束,并且出產功率和產品質量也得到了很大程度的保證。
三、實例分析
現以FANUC系統的GSK980T車床,加工螺紋M30×3/2-5g6g為例,闡明多頭螺紋的數控加工進程:
工件要求:螺紋長度為25mm,兩頭倒角為2×45°、牙外表粗糙度為Ra3.2的螺紋。選用的材料是為45#圓鋼坯料。
1.準備作業。通過對加工零件的分析,運用車工手冊查找M30×3/2-5g6g的各項底子參數:該工件是導程為3mm紋且螺距為1.5(該參數是查表的重要根據)的雙線螺;大徑為30,公差帶為6g,查得其標準上過失為-0.032、下過失為-0.268、公差有0.236,公差要求較松;中徑為29.026,公差帶為5 g,查得其標準上過失為-0.032、下過失為-0.150,公差為0.118,公差要求較緊;小徑按照大徑減去車削深度判定。螺紋的總背吃刀量ap與螺距的聯系近經歷公式ap≈0.65P,每次的背吃刀量按照初精加工及材料來判定。大徑是車削螺紋毛壞外圓的編程根據,中徑是螺紋標準檢測的規范和調試螺紋程序的根據,小徑是編制螺紋加工程序的根據。兩頭留有必定標準的車刀退刀槽。
2、正確挑選加工刀具。螺紋車刀的品種、材質較多,挑選時要根據被加工材料的品種合理選用,材料的商標要根據不同的加工階段來判定。關于45#圓鋼材質,宜選用YT15硬質合金車刀,該刀具材料既適合于粗加工也適合于精加工,通用性較強,對數控車床加工螺紋而言是比較適合的。別的,還需求考慮螺紋的形狀過失與磨制的螺紋車刀的視點、對稱度。車削45鋼螺紋,刃傾角為10°,主后角為6°,副后角為4°,刀尖角為59°16’,左右刃為直線,而刀尖圓弧半徑則由公式R=0.144P判定(其間P為螺距),刀尖圓角半徑很小在磨制時要特別仔細。
四、多頭螺紋加工辦法及程序設計
多頭螺紋的編程辦法和單頭螺紋相似,選用改動切削螺紋初始位置或初始角來結束。假定毛坯已經按要求加工,螺紋車刀為T0303,選用如下兩種辦法來進行編程加工。
1.用G92指令來加工圓柱型多頭螺紋。G92指令是簡略螺紋切削循環指令,我們可以運用先加工一個單線螺紋,然后根據多頭螺紋的結構特性,在Z軸方向上移過一個螺距,然后結束多頭螺紋的加工。程序修改如圖。(工件原點設在右端面中心)
2.用G33指令來加工圓柱型多頭螺紋。用G33指令來編程時,除了考慮螺紋導程(F值)外,還要考慮螺紋的頭數(P值)來闡明螺紋軸向的分度角。
式中:X、Z——決對標準編程的螺紋結束坐標(選用直徑編程)。
U、W——增量標準編程的螺紋結束坐標(選用直徑編程)
F——螺紋的導程
P——螺紋的頭數
3.多頭螺紋加工的操控要素。在運用程序加工多頭中,要特別注意對以下問題的操控:(1)主軸轉速S280的判定。由于數控車床加工螺紋是依托主軸編碼器作業的,主軸編碼器對不同導程的螺紋在加工時的主軸轉速有一個極限識別要求,要用經歷公式S 1200/P-80來判定(式中P為螺紋的導程),S不能超過320r/min,故取S280 r/min。(2)外表粗糙度要求。螺紋加工的終一刀底子選用重復切削的辦法,這樣可以獲得更潤滑的牙外表,到達Ra3.2要求。(3)批量加工進程操控。對試件切削運轉程序之前除正常要求對刀外,在FANUC數控系統中要設定刀具磨損值在0.3~0.6之間,地一次加工完后用螺紋千分尺進行精細測量并記載數據,將磨損值減少0.2,進行第2次主動加工,并將測量數據記載,今后將磨損補償值的遞減崎嶇減少并查詢它的減幅與中徑的減幅的聯系,重復進行,直至將中徑標準調試到公差帶的中心為止。在今后的批量加工中,標準的改動可以用螺紋環規抽檢,并通過更改程序中的X數據,也可以通過調整刀具磨損值進行補償。
一、鉆孔與擴孔
1. 鉆孔
鉆孔是在實心資料上加工孔的地一道工序,鉆孔直徑一般小于 80mm 。鉆孔加工有兩種辦法:一種是鉆頭旋轉;另一種是工件旋轉。上述兩種鉆孔辦法發作的差錯是不相同的,在鉆頭旋轉的鉆孔辦法中,因為切削刃不對稱和鉆頭剛性不足而使鉆頭引偏時,被加工孔的中心線會發作偏斜或不直,但孔徑根本不變;而在工件旋轉的鉆孔辦法中則相反,鉆頭引偏會引起孔徑改變,而孔中心線仍然是直的。
常用的鉆孔刀具有:麻花鉆、中心鉆、深孔鉆等,其中常用的是麻花鉆,其直徑規格為 Φ0.1-80mm。
因為構造上的約束,鉆頭的曲折剛度和扭轉剛度均較低,加之定心性不好,鉆孔加工的精度較低,一般只能到達 IT13~IT11;外表粗糙度也較大,
Ra
一般為 50~12.5μm;但鉆孔的金屬切除率大,切削功率高。鉆孔首要用于加工質量要求不高的孔,例如螺栓孔、螺紋底孔、油孔等。對于加工精度和外表質量要求較高的孔,則應在后續加工中經過擴孔、鉸孔、鏜孔或磨孔來到達。
2. 擴孔
擴孔是用擴孔鉆對已經鉆出、鑄出或鍛出的孔作進一步加工,以擴大孔徑并進步孔的加工質量,擴孔加工既能夠作為精加工孔前的預加工,也能夠作為要求不高的孔的終究加工。擴孔鉆與麻花鉆類似,但刀齒數較多,沒有橫刃。
與鉆孔比較,擴孔具有下列特色:(1)擴孔鉆齒數多(3~8個齒)、導向性好,切削比較穩定;(2)擴孔鉆沒有橫刃,切削條件好;(3)加工余量較小,容屑槽能夠做得淺些,鉆芯能夠做得粗些,刀體強度和剛性較好。擴孔加工的精度一般為
IT11~IT10
級,外表粗糙度Ra為12.5~6.3μm。擴孔常用于加工直徑小于
的孔。在鉆直徑較大的孔時(D ≥30mm ),常先用小鉆頭(直徑為孔徑的 0.5~0.7 倍)預鉆孔,然后再用相應尺度的擴孔鉆擴孔,這樣能夠進步孔的加工質量和出產功率。
擴孔除了能夠加工圓柱孔之外,還能夠用各種特殊形狀的擴孔鉆(亦稱锪鉆)來加工各種沉頭座孔和锪平端面示。锪鉆的前端常帶有導向柱,用已加工孔導向。
二、鉸孔
鉸孔是孔的精加工辦法之一,在出產中運用很廣。對于較小的孔,相對于內圓磨削及精鏜而言,鉸孔是一種較為經濟實用的加工辦法。
1. 鉸刀
鉸刀一般分為手用鉸刀及機用鉸刀兩種。手用鉸刀柄部為直柄,作業部分較長,導向作用較好,手用鉸刀有整體式和外徑可調整式兩種結構。機用鉸刀有帶柄的和套式的兩種結構。鉸刀不僅可加工圓形孔,也可用錐度鉸刀加工錐孔。
2. 鉸孔工藝及其運用
鉸孔余量對鉸孔質量的影響很大,余量太大,鉸刀的負荷大,切削刃很快被磨鈍,不易取得光潔的加工外表,尺度公役也不易確保;余量太小,不能去掉上工序留下的刀痕,天然也就沒有改進孔加工質量的作用。一般粗鉸余量取為0.35~0.15mm,精鉸取為
01.5~0.05mm。
為防止發作積屑瘤,鉸孔一般選用較低的切削速度(高速鋼鉸刀加工鋼和鑄鐵時,v <8m/min)進行加工。進給量的取值與被加工孔徑有關,孔徑越大,進給量取值越大,高速鋼鉸刀加工鋼和鑄鐵時進給量常取為
0.3~1mm/r。
鉸孔時必須用恰當的切削液進行冷卻、光滑和清洗,以防止發作積屑瘤并及時鏟除切屑。與磨孔和鏜孔比較,鉸孔出產率高,容易確保孔的精度;但鉸孔不能校對孔軸線的方位差錯,孔的方位精度應由前工序確保。鉸孔不宜加工階梯孔和盲孔。
鉸孔尺度精度一般為 IT9~IT7級,外表粗糙度Ra一般為
3.2~0.8
μm。對于中等尺度、精度要求較高的孔(例如IT7級精度孔),鉆—擴—鉸工藝是出產中常用的典型加工計劃。
三、鏜孔
鏜孔是在預制孔上用切削刀具使之擴大的一種加工辦法,鏜孔作業既能夠在鏜床上進行,也能夠在車床上進行。
1. 鏜孔辦法
鏜孔有三種不同的加工辦法。
(1)工件旋轉,刀具作進給運動 在車床上鏜孔大都屬于這種鏜孔辦法。工藝特色是:加工后孔的軸心線與工件的反轉軸線一致,孔的圓度首要取決于機床主軸的反轉精度,孔的軸向幾許形狀差錯首要取決于刀具進給方向相對于工件反轉軸線的方位精度。這種鏜孔辦法適于加工與外圓外表有同軸度要求的孔。
(2)刀具旋轉,工件作進給運動 鏜床主軸帶動鏜刀旋轉,作業臺帶動工件作進給運動。
(3)刀具旋轉并作進給運動 選用這種鏜孔辦法鏜孔,鏜桿的懸伸長度是改變的,鏜桿的受力 變形也是改變的,靠近主軸箱處的孔徑大,遠離主軸箱處的孔徑小,構成錐孔。此外,鏜桿懸伸長度增大,主軸因自重引起的曲折變形也增大,被加工孔軸線將發作相應的曲折。這種鏜孔辦法只適于加工較短的孔。
2. 金剛鏜
與一般鏜孔比較,金剛鏜的特色是背吃刀量小,進給量小,切削速度高,它能夠取得很高的加工精度(IT7~IT6)和很光潔的外表(Ra為
0.4~0.05
μm)。金剛鏜初用金剛石鏜刀加工,現在普遍選用硬質合金、CBN和人造金剛石刀具加工。首要用于加工有色金屬工件,也可用于加工鑄鐵件和鋼件。
金剛鏜常用的切削用量為:背吃刀量預鏜為 0.2~0.6mm,終鏜為0.1mm ;進給量為
0.01~0.14mm/r
;切削速度加工鑄鐵時為100~250m/min ,加工鋼時為150~300m/min ,加工有色金屬時為
300~2000m/min。
為了確保金剛鏜能到達較高的加工精度和外表質量,所用機床(金剛鏜床)須具有較高的幾許精度和剛度,機床主軸支承常用精細的角觸摸球軸承或靜壓滑動軸承,高速旋轉零件須經經確平衡;此外,進給機構的運動必須十分平穩,確保作業臺能做平穩低速進給運動。
金剛鏜的加工質量好,出產功率高,在大批大量出產中被廣泛用于精細孔的終究加工,如發動機氣缸孔、活塞銷孔、機床主軸箱上的主軸孔等。但須引起留意的是:用金剛鏜加工黑色金屬制品時,只能運用硬質合金和CBN制造的鏜刀,不能運用金剛石制造的鏜刀,因金剛石中的碳原子與鐵族元素的親和力大,刀具壽數低。
3. 鏜刀
鏜刀可分為單刃鏜刀和雙刃鏜刀。