您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-11-12 07:44  





本課題主要研究原穩站用油油管殼式換熱器的三維數值模擬,換熱器以含砂作為內部換熱介質,考慮換熱面結垢和泄漏的影響,建立管殼式換熱器結垢和泄漏的傳熱模型,借助軟件對換熱器溫度場、流場分布進行模擬,分析結垢厚度、泄漏口尺寸、泄漏口位置、泄漏口數量對換熱器傳熱性能的影響,創新點如下:基于流體力學和傳熱學的流動和傳熱基本公式,建立了管殼式換熱器結垢和泄漏的理論預測數學模型,運用此模型解決了管殼式換熱器結垢及泄漏的理論預測分析。2mm時,管殼式換熱器模擬運行達到穩定的情沉下,換熱器殼程內沿換熱器管民方向各個截而的砂體積分情況。
列管式油冷卻器主要研究內容包括以下三部分:管壁污垢對管殼式換熱器流動傳熱性能的影響規律研宄;對換熱器殼側的速度場進行研究,分析換熱器的結構對自然循環的影響,并提出相關的意見對換熱器進行優化分析。換熱面泄漏對管殼式換熱器流動傳熱性能的影響規律研究;基于管殼式換熱器進出口動態參數一溫度、壓力等,對管殼式換熱器內部故障進行診斷評價研宄。本課題結合大慶油田分公司某大隊原穩站用管殼式換熱器的運行特點,針對含砂油含砂油換熱器這一特殊介質,借助軟件,在充分利用已有基本理論和研宄成果的基礎上,對管殼式換熱器結垢和泄漏進行了流動傳熱的數值模擬,分析結垢和泄漏對換熱器流動傳熱性響,研宄結論對利用換熱器熱工參數檢測管壁結垢和泄漏具有一定的理論用。
運用熱力學能耗分析法,分析了管殼式污水換熱器中軟塘的厚度對換熱強度、流動壓降及其有效能損失的影響。通過工程實例,揖出了中等流速對系統節能和經濟性都有利,而當流速較低時需進行及時除塘。對沉浸式污水換熱器的堵塞、結塘和腐燭問題進行了研究,建立了沉浸式污水換熱器的傳熱模型,并通過實驗驗證了模型的準確性;在污水流量變化的情況下,分別測試了沉浸式換熱器在冬、夏季的傳熱系數。殼程為四面體網格,管程及殼程進出口管為六面體網格,終網格數量為I,952,621個。
實測結果表明,采用高密度聚乙稀管的沉浸式污水換熱器單位長度的傳熱量約為100kw搭建板式換熱器冷卻水污據熱阻實驗臺,測得不同對間、流速和溫度下天然循環冷卻水(松花江水)中鐵離子、氯離子、細菌總數、值、溶解氧、池度、電導率等水質參數,隨機取一組實驗的水質參數作為輸入變量,建立換熱器冷卻水污振熱阻預測的偏二乘回歸模型,對板式換熱器的污塘熱阻進行預測。年,徐志明、李煌等人對比實驗研究了不同工況冷卻水入口溫度、流速下板式換熱器松花江冷卻水污拒特性,將污拒熱阻與這兩種運行參數進行了灰色關聯分析,并就運行參數對其結塘的影響逐一作了機理分析。。Kotcioglui和NasiriKM等人應用理想換熱器模型進行數值模擬研究,使用修改后的k-‘湍流模型,得到矩形通道板翅縱向打斷、放大和收縮時的溫度、速度和壓力分布圖。
換熱器內砂沉積對結垢位置的影響
換熱器內管壁結垢主要受其液體介質含砂濃度的影響,對管殼式換熱器殼程流場進行了液一固兩相流數值模擬,根據模擬結果分析,確定換熱器的主要砂沉積位置。殼程為沙子和的兩相流動,沙子的粒徑根據現場采集的數據大約在0.2mm-O.}mm之間。本次研究選用沙子粒徑為0.2mm和0.4tn m,沙子的體積分數選為10%,殼程進口流速為0.7m/s,對管殼式換熱器的殼程流場進行數值模擬。對換熱管道不同缺陷產生的漏磁信號進行了二維模擬,考慮了靜態時的支撐板處缺陷深度、缺陷寬度、換熱器管道壁厚、檢測儀器低速運動,以及缺陷相對于支撐板處在不同的位置對檢測儀器輸出信號的影響,給出了漏磁場磁感強度隨以上參數變化的曲線。砂子體積分布的位置選取結果為沿換熱器管長方向的四個截面,其中,z=-0.7n:為管殼式換熱器殼程出I:l處的一個截而,z二一0.39m與z=0.016m為靠近管殼式換熱器折流板的一個截面,z=0.7m為管殼式換熱器殼程入I-I處的一個截面。