您好,歡迎來到易龍商務網!
【廣告】
發布時間:2020-07-30 09:22  
鈦合金自行車用鈦管
鈦合金是航空航天工業中使用的一種新的重要結構材料,比重、強度和使用溫度介于鋁和鋼之間,但比強度高并具有優異的抗海水腐蝕性能和超低溫性能。1950年美國在F-84戰斗機上用作后機身隔熱板、導風罩、機尾罩等非承力構件。60年始鈦合金的使用部位從后機身移向中機身、部分地代替結構鋼制造隔框、梁、襟翼滑軌等重要承力構件。鈦合金在飛機中的用量迅速增加,達到飛機結構重量的20%~25%。AMEGroup預計,今年鎳靶市會有3萬噸的過剩供應,較上年度將縮減一半,此過量供應相當于鎳靶成品需求量的1。70年代起,民用機開始大量使用鈦合金,如波音747客機用鈦量達3640公斤以上。馬赫數小于 2.5的飛機用鈦主要是為了代替鋼,以減輕結構重量。
鈦及鈦合金焊接對焊接時保護要求非常嚴格,當焊縫含碳量為0.55%時,焊縫塑性幾乎全部消失而變成非常脆的材料,焊后熱處置也無法消除此種脆性。國技術條件規定,鈦合金母材的含碳量不大于0.1%焊縫含碳量不逾越母材含碳量。
鈦板焊縫缺陷是由于鈦板焊接時,因弧焊槍形成的氣氣體維護層只能維護好焊接熔池不受空氣的有害作用,而對已凝固而處于高溫狀態附近的焊縫及其附近區域則無保護作用,而處于這種狀態的鈦板焊縫及其附近的區域仍有很強的吸收空氣中的氮及氧的能力。
3.氮的影響。氮和鈦板發生劇作用,700℃以上的高溫下。形成脆硬的氮化鈦(TiN而且氮與鈦形成間隙固溶體時所引起的晶格歪挪程度,比等量的氧引起的后果更為嚴重,因此,氮對提高工業純鈦焊縫的抗拉強度、硬度,降低焊縫的塑性性能比氧更為顯著。70年代,鈦合金在航空發動機中的用量一般占結構總重量的20%~30%,主要用于制造壓氣機部件,如鍛造鈦風扇、壓氣機盤和葉片、鑄鈦壓氣機機匣、中介機匣、軸承殼體等。當焊縫含氮量在0.13%以上是焊縫由于過脆而產生裂紋。
4.碳的影響。鈦及鈦合金是比較穩定的但在焊接過程中,常溫下。液態熔滴和熔池金屬具有強烈吸收氫、氧、氮的作用,而且在固態下,這些氣體已與其發生作用。氫在α相中溶解度很小,鈦合金中溶解過多的氫會產鈦是同素異構體,熔點為1720℃,在低于882℃時呈密排六方晶格結構,稱為α鈦。隨著溫度的升高,鈦及鈦合金吸收氫、氧、氮的能力也隨之明顯上升,大約在250℃左右鈦開始吸收氫,從400℃開始吸收氧,從600℃開始吸收氮,這些氣體被吸收后,將會直接引起焊接接頭脆化,影響焊接質量的極為重要的因素。
從400℃開始吸收氧,從600℃開始吸收氮,而空氣種含有大量氮和氧。隨氧化水平逐步加重,鈦板焊縫顏色發生變化及焊縫塑性下降的規律。銀白色(無氧化)金黃色(TiO,大約在250℃左右鈦開始吸收氫。60年始鈦合金的使用部位從后機身移向中機身、部分地代替結構鋼制造隔框、梁、襟翼滑軌等重要承力構件。輕微氧化)藍色(Ti2O3氧化稍為嚴重)灰色(TiO2氧化嚴重。