您好,歡迎來到易龍商務網!
發布時間:2021-10-20 13:04  
【廣告】





人工智能控制器
以用戶綜合室溫為控制目標,直接指導現場換熱站、燃氣鍋爐的供水溫度控制,實現供熱系統智能化升級。智能決策機TM通過通訊系統及云端獲取一次、二次側流量、壓力、溫度、抽樣室溫、氣候參數等數據。決策機TM內置的人工智能AI具備邏輯推演、規律識別并自動尋優能力,可在2~3周時間內完成大數據深度學習
建立相匹配的控制模型,同時根據數據實時反饋選擇控制方案,持續進化,給出優控制參數值。品投運后云端一鍵操作,的簡單背后是強大的算法支持:決策機TMAI可根據用戶設置的室溫目標數據,完成復雜運算后直接給出控制目標參數,如供水溫度等。決策機TMAI模型可以解決傳統控制模型中室溫數據滯后性問題,結合氣候參數提前預測、預知合理控制目標值,提前干預,平抑室溫波動。
由于控制簡單,直流傳動在過去得到了廣泛的使用。但由于它們眾所周知的限制以及DSP技術的進步,直流傳動正逐漸被的交流傳動所取代。但近,許多廠商也推出了一些改進的直流驅動產品,但都沒有使用人工智能技術。相信使用人工智能的直流傳動技術能得到進一步的提高。智能技術在電氣傳動技術中占相當重要的地位,特別是自適應模糊神經元控制器在性能傳動產品中將得到廣泛應用
誤差反向傳播技術是多層前聵ANN常用的學習技術。如果網絡有足夠多的隱藏層和隱藏結點以及適宜的激勵函數,多層ANN只能實現需要的映射,沒有直接的技術選擇優隱藏層、結點數和激勵函數,通常用嘗試法解決這個問題,反向傳播訓練算法是基本的快下降法,輸出結點的誤差反饋回網絡,用于權重調整,搜索優。