您好,歡迎來到易龍商務網!
發布時間:2021-09-18 19:30  
【廣告】







3 試驗結果對比及分析
本文主要針對風機的全壓特性和效率特性展開對比及分析,故對風機靜壓特性和氣動噪聲問題不做討論。

3.1 不同安裝角試驗結果對比及分析
三種安裝角下,葉頂間隙均為10mm,均為前吹試驗。圖3、圖4 為不同安裝角下風機的全壓特性曲線與靜壓特性曲線對比圖,圖5為效率特性曲線對比圖。其中Q代表風量,ptf代表全壓,ηtf代表全壓效率。
當葉頂間隙較大時,泄漏流與主流發生相互作用形成泄漏渦,泄漏渦會堵塞主流;當葉頂間隙較小時,氣流由壓力面流向吸力面,產生泄漏射流,但不一定會形成泄漏渦,且葉頂間隙減小時,泄漏流與主流的卷吸作用減弱,泄漏渦的強度和影響區域也隨之減小。

顯然,減小葉頂間隙有利于降低流動損失,提高風機效率,但也對制造商的加工制造水平提出了更高的要求,實際生產中需要根據生產廠家的工藝水平和所用材料合理確定間隙。
地鐵風機的一個基本要求是結構緊湊,占地面積小。從結構上解決風機反風的問題有兩種方法。 旋轉葉片法
如果將風機的動葉和靜葉分別旋轉約180o,則可以實現較的反風。只不過此時的動葉位于靜葉的下風向,其效率要低于正風效率,而且風機葉片在葉根處的稠度(即實度)較大,葉片的旋轉會造成相鄰葉片間的干涉,因此不得不每隔一個葉片分兩組進行旋轉,這樣才能完成反風動作。所以這種反風方法結構復雜,不容易實施。
