您好,歡迎來到易龍商務網!
發布時間:2020-12-09 10:03  
【廣告】





三元流技術
三元流技術就是把葉輪內部的三元立體空間無限地分割,通過對葉輪流道內各工作點的分析,建立起完整、真實的葉輪內流動的數學模型。
通過這一方法,對葉輪流道分析可以做得準確,反映流體的流場、壓力分布也接近實際。葉輪出口為射流和尾跡(漩渦)的流動特征,在設計計算中得以體現。因此,設計的葉輪也就能更好地滿足工況要求,效率顯著提高。但是,如果單純的將普通水泵的葉輪更換為三元流葉輪,其節能效果可能不能達到預期,因為在泵殼及其他部件都已經定型的情況下,單獨的三元流葉輪不能改變整個水泵內部所有的過流部件的水阻力和水損失。
液下泵噪音大的原因分析
液下泵噪音大的原因
1、機械方面
玻璃鋼液下泵轉動部件質量不平衡,粗制濫造、安裝質量不良、機組軸線不對稱、擺度超過允許值,零部件的機械強度和剛度較差、軸承和密封部件磨損破壞等,都會產生強烈的振動。
2、水泵的質量及其它方面
由于進水流道的不合理設計使其進水條件的惡化,產生漩渦。會導致長軸液下泵的振動。支撐液下泵和電機的基礎發生不均勻沉陷也會導致其發生振動。

液下泵結構及應用改造
1.1 介質特性
根據輸送介質的腐蝕性、揮發性、含固體顆粒粒度、濃度等情況,確定葉輪型式、材料、軸承、密封及沖洗方式等。
1.2 使用條件
抽送介質溫度高低,決定了支承型式、冷卻結構、有無保溫夾套等。根據泵的使用要求,可合理確定泵體插入深度,屬于隨時都可能啟動的液下泵,泵體插入深度必須足夠長,以使液位浸沒泵體,保證液下泵隨時可以啟動,例如硫酸生 產用泵及濕法冶煉所用液下泵;污水排空性質的液下泵,使用要求是污水積滿以后,啟動液下泵,吸凈污水后停機。在這種工況下,液下泵的泵體插入深度可以設計得較短,通過加裝吸入管補充插入深度,吸凈液體。泵體插入深度的縮短,有利于提高泵的可靠性,并降低成本。
2 液下泵結構
2.1 典型結構
為雙支承液下泵剖面圖,支承是剛性的,通常使用滾動軸承,上軸承為成對安裝的角接觸球軸承或向
心球軸承,下軸承為向心球軸承或圓柱滾子軸承。這種配置可以承受雙向軸向力和一定的徑向力。此泵采用
離心葉輪,它適用于固體顆粒含量較低的場合。根據介質的具體特性還采用旋流式及混流式葉輪。
2.2 一些變型結構
因結構制約,雙支承液下泵轉速n= 1500 r/min時,泵體插入深度L≤ 1 700 mm;n= 3000 r/min時,泵體插
入深度L≤ 1 100 mm。插入深度較短是雙支承液下泵的主要缺點。為了解決這個問題,加大液下插入深度,
可采用下列措施,這形成了液下泵的兩種變型結構。