您好,歡迎來到易龍商務網!
發布時間:2020-12-05 02:30  
【廣告】







工業生產中的9-38風機特別是離心式風機應用很廣泛,在一些生產裝置中甚至屬關鍵設備。粉塵不僅嚴重危及采掘工作面人員的身體健康,而且容易造成重大事故隱患。風機的安全、可靠運行是實現穩定生產的重要保證。但由于種種原因,造成風機超過允許范圍的振動的現象并不少見,嚴重的劇烈振動會造成風機本體及其關聯設備破壞的設備事故,甚至還會造成人身安全事故。因此,必須高度重視風機的維護檢查工作。企業的9-38風機技術人員及其操作人員和維修人員在工作中必須對風機的運行狀況進行監測、巡查,及時發現故障隱患并及時排除,防患于未然。本文研究的目的在于針對工業生產中常用的離心式風機運行中易于發生的振動現象進行研究和可采取的處理措施,應該能對生產一線中從事此類設備管理和維修的人員提供借鑒意義。
9-38風機絕大多是由電動機驅動工作的主要由葉輪、蝸殼、軸和軸承座及一些控制附件組成,屬動設備。以9-38風機蝸殼與葉輪出口在半徑方向上的間距隨方位角線性遞增來優化蝸殼型線,并用試驗證明了良好的蝸殼型線不僅能提高風機效率及全壓,還能改變流量-壓力曲線的變化趨勢。動設備完全不振動是不可能的,只是振動的允許范圍不同而已。一般來講,大型高速風機軸承采用軸瓦,潤滑采用潤滑油強制噴射潤滑,高速旋轉的主軸懸浮于油膜上,正常工況時振動很低。中小型的中低速風機軸承采用滾動軸承,常采用潤滑脂潤滑或潤滑油浸泡飛濺潤滑,正常工況時振動稍大。振動無論大小,只要符合相關技術要求即可,但是異常的、超標的振動必須及時處理,否則振動會惡化,后造成事故和經濟損失。
將9-38風機模型導入ICEM 進行網格劃分,網格劃分過程中對離心風機關鍵部位要進行加密處理,如葉輪、集流器、蝸舌、進氣箱的轉角處等。4種消聲組合方式的壓力損失并不相同,當額定轉速為3800r/min,在設計工況下,A組合改進風機全壓降低了約16.0Pa,效率下降了約1.28%。對風機的進口與出口適當延長,以保證計算的穩定性。考慮到離心風機結構的復雜且不規則性,本文采用非結構四面體網格進行劃分,其中無進氣箱的離心風機網格數量約370萬,網格質量為0.3以上;帶進氣箱的離心風機網格數量為380萬,網格質量為0.3以上。
9-38風機采用標準k-?模型,壁面函數為Scalable,數值計算方法為高階求解格式,求解格式為一階格式。另外,有些管道補償器如填料式補償器、波形補償器也可以起到減震作用。由于通風機轉速低,馬赫數小,可認為氣流為不可壓縮定常流動。進口給定質量流量,出口給定靜壓,壁面條件為無滑移邊界,轉速為1 480r/min,并將流動區域分為靜止域與旋轉域,兩者通過Interface連接,連接模型為普通連接,坐標變換為轉子算法,網格連接方式為GGI。本文所研究的某離心風機葉輪有均布的16 個前向的大小葉片,其內部流場較為復雜,為了揭示9-38風機內的流場特性,對風機進行全三維數值模擬。先單獨分析了進氣箱內部流場特性,然后對進氣箱與風機進行一體化分析,研究進氣箱對離心風機性能的影響。
9-38風機葉片吸力側形成的低能流積聚的“尾跡區”,形成“射流-尾流”結構。加米字集流器風機進口靜壓明顯高于普通集流器離心風機,其較大靜壓達到2510Pa,普通集流器達到1440Pa。加進氣箱后,風機葉輪尾緣處的“尾跡-射流”更加的嚴重,風機模型尾跡區占了比較大的空間,減少了風機流道有效面積。在小流量區,風機內部的流場分布發生偏心現象(C 處),葉輪流道E 側,氣體比較充實,葉輪流道F 側氣體分布較差,與原始風機內部流場分布相比,其9-38風機葉輪流道的充盈性差。離心風機的效率曲線如圖6,無進氣箱情況下在流量為2.82kg/s,壓力為3 106.23Pa 時,達到較率68.64%;加進氣箱后在流量為1.68kg/s,壓力為2 775.54Pa,達到較率59.45%,通過與原始風機對比可知,加進氣箱后其較率降低8.19%。同樣由圖6 效率曲線對比圖可知,加進氣箱后風機整體效率降低,與原始9-38風機相比其區域比較窄,縮短了工作區域,且加進氣箱后較優工況點向小流量區偏移。加進氣箱后,離心風機的全開流量降低,與無進氣箱相比,流量降低了16.9%。由圖7 可知,加進氣箱不僅降低了風機的全開流量,其全壓也有所減少。風機性能測試采用C 型試驗裝置對帶進氣箱的離心風機進行了性能測試,測試標準按GB/T 1236-2017《工業通風機用標準化風道進行性能實驗》執行。
以9-38風機蝸殼與葉輪出口在半徑方向上的間距隨方位角線性遞增來優化蝸殼型線,并用試驗證明了良好的蝸殼型線不僅能提高風機效率及全壓,還能改變流量-壓力曲線的變化趨勢;BEENA等[11]通過應用層次分析法(AHP),對蝸殼的重要幾何參數進行了優先排序,闡明了各參數對離心風機性能的影響;9-38風機采用3種不同流量的五孔探頭,測量了風機蝸殼內流體的三維流動,得出傳統一維蝸殼型線設計方法忽略了風機內部嚴重的泄漏情況,應根據流體實際流動進行修正的結論。因此提高蝸殼型線設計水平,不僅能改善風機氣動性能,還能達到降低噪聲的效果。本文在傳統蝸殼型線設計理論基礎上,以某抽油煙機用多翼離心風機為研究對象,
9-38風機采用動量矩修正方法對其進行性能優化。但后蓋板加裝消聲材料,恰好吸收了電機的部分噪聲,因此后蓋板加裝吸聲材料降低風機噪聲明顯。并考慮粘性應力的作用對原有k-ε計算模型進行修正,以期提高數值計算結果的準確度,為CFD數值模擬預測風機性能的可靠性提供參考。多翼離心風機由進口集流器、葉輪及蝸殼組成,具體結構如圖1所示。其設計轉速n=1200r/min,設計流量Qv=0.15m3/s,主要尺寸參數為:9-38風機蝸殼寬度b1152mm,葉輪內徑1D210mm,葉輪外徑2D246mm,葉片進口安裝角178A,葉片出口安裝角2160A,葉片圓弧半徑r14mm,葉片數z60。為了提供更好的來流條件,給定較為準確的邊界條件,本研究在利用Solidworks軟件對風機進行三維建模時,分別將進風區域和出風區域進行延長處理,以保證進出口氣體的流動充分發展。另外,為了方便模型的建立,在盡量減小數值模擬誤差的前提下對電動機結構進行一定程度的簡化,