您好,歡迎來到易龍商務網!
發布時間:2020-11-30 10:38  
【廣告】







20世紀初,不銹鋼被引入到產品設計領域中,設計師們圍繞著它的堅韌和抗腐蝕特性開發出許多新產品,涉及到了很多以前從未涉足過的領域。這一系列設計嘗試都是非常具有革命性的:比如,消毒后可再次使用的設備出現在醫學產業中。
不銹鋼分為四大主要類型:奧氏體、鐵素體、鐵素體-奧氏體(復合式)、馬氏體。家居用品中使用的不銹鋼基本上都是奧氏體。
材料特性:衛生保健、防腐蝕、可進行精細表面處理、剛性高、可通過各種加工工藝成型、較難進行冷加工。
19世紀工業革命以來,為了適應耐磨耐高溫、耐酸堿腐蝕和高強度、高硬度等特殊要求,人們需要不斷開發各種特殊合金材料以滿足需求,然而這些合金材料往往成本高昂,而且多數情況下,難以同時滿足整體和表面的性能要求。金屬材料服役時不可避免的與環境相接處,而與環境真正接觸的是金屬表面,如各種機械零件和工程構件,甚至體內植入材料等。當金屬表面發生破壞或失效,將嚴重影響其服役效果和使用壽命。1983年英格蘭伯明翰大學湯·貝爾提出表面工程的概念,利用量材料對金屬基體表面進行改性處理,使金屬表面得到保護和強化,解決單一材料無法解決的問題,從而大大提高產品的使用壽命和可靠性。
機械拋光
依靠非常細小的拋光粉的磨削、滾壓作用,除去試樣磨面上的極薄一層金屬。表面淬火
利用快速加熱使表層奧實體化,立即淬火使表層組織轉變為馬氏體以強化表面,心部組織基本不變。
感應加熱
利用交變電流在表面感應巨大渦流,使金屬表面迅速加熱形成氧化層。
【金屬表面涂層】
表面涂層方法是通過物理或化學的方法在基體材料表面制備一層與基體組織結構和性能不同的鍍層或膜層。根據涂層作用原理不同,又可大致分為轉化膜層和沉積膜層兩類。
轉化膜層是通過金屬基體與環境相(通常為液體)發生某種特定的化學反應而在基體表面原位生長的膜層,化學組成多為無機成分。由于原位生長的特殊性,轉化膜通常具有較高的膜基界面結合強度。目前形成轉化膜的方法主要包括鈍化(passivation)、陽極氧化(anodization)、微弧氧化(micro-arc oxidation)、離子注入(ion implantation)以及化學轉化(chemical conversion)等。
沉積膜層主要指依靠電能、動能或熱能,將成膜原子、分子或離子輸送至基體表面,進而發生凝聚形成的膜層。一般而言,形成的涂層化學成分多樣,可以根據需求和應用不同選擇無機或有機成分甚至金屬涂層。由于加工方法的多樣性和差異性,形成的沉積膜層與基體的結合強度變化也很大。目前形成沉積膜層的方法主要包括噴涂(spraying)、氣相沉積(vapor deition)、溶膠-凝膠法(sol-gel)以及仿生沉積(biomimetic)等。